
B.TECH. DEGREE EXAMINATION, JAN 2023

Fifth semester

Computer Science and Engineering

SOFTWARE ENGINEERING

(2013-14 Regulation)

PART-A

1. Define software engineering. What are its applications?

Software engineering is a detailed study of engineering to the design, development

and maintenance of software.

2. What are the advantages of waterfall model?

1. Simple and easy to understand.

2. It works well for smaller projects where requirements are very well understood.

3. Clearly defined stages.

4. Easy to arrange tasks.

3. Differentiate risk management and scheduling?

Risk management Scheduling

risk management is defined as the

process of identifying

Schedule Management is the process of

defining project tasks .

monitoring and managing potential risks durations, dependencies, and assigned

resources in order to complete the

project

minimize the negative impact Monitoring and reporting on the

schedule to ensure the project is

delivered on time.

4. Write short notes on organization and team structure?

Organization Structure:

The organization structure is classified into two types

 1. Functional organization

 2. Project organization

Team Structure:

 Problems of different complexities and sizes require different team structures:

 Chief programmer: suitable for routine work.

 Democratic: Small teams doing R&D type work

5. Mention few characteristics of a good software design?

 Correctness.

 Understand ability

 Efficiency

 Maintainability

6. List out the difference between coupling and cohesion.

Coupling Cohesion

Coupling is the degree of

interdependence between the modules.

Cohesion is the degree to which the

elements inside a module belong

together

 Two modules highly coupled A module with high cohesion

contains elements that are tight

related to each other

Low coupling among them work Low cohesion if it contains unrelated

elements

Loose coupling reflects the higher

quality of software design

Highly cohesive modules reflect

higher quality of software design

7. Define patterns.

 Design pattern are commonly accepted solutions to some problems that recur

during designing different application.

8. What are the advantages of UML models?

 Provides standard for software development.

 Reducing of costs to develop diagrams of UML using supporting tools.

 Development time is reduced.

9. What are the steps followed in testing?

1. Requirement Analysis.

2. Test Planning.

3. Test Case Designing and Development.

4. Test Environment Setup.

5. Test Execution.

6. Test Closure.

10. List out the levels of testing?

 Unit Testing.

 Integration Testing.

 System Testing.

 Acceptance Testing.

PART-B

UNIT-I

11. Discuss on evaluation and impact of software development projects.

 Software development is a continuous process wherein we constantly improve

existing functionality or add new features. However, every change introduced to a

Product might have an impact on a particular part of the product or even on the entire

Product. And the more changes we make to a product, the more difficult it becomes to

track their consequences.

Impact analysis is a software testing approach that helps you define all risks associated with

any kind of changes made to the product under test.

It’s best to perform an impact analysis whenever:

 there’s a request for a change to the product

 there are changes in product requirements

 there are changes to current modules or features

 you plan to implement new modules or features

1. Dependency impact analysis

2. Experiential impact analysis.

3. Traceability impact analysis

 12. Explain in detail about software life cycle models.

 SDLC is the acronym of Software Development Life Cycle.

 It is also called as Software development process.

 The software development life cycle (SDLC) is a framework defining tasks performed

at each step in the software development process.

 Waterfall Model

 Iterative Model

 Spiral Model

 Prototyping model

 Evolutionary mode

UNIT-II

13. Write short notes on COCOMO model.

Constructive COst estimation MOdel (COCOMO) was proposed by Boehm[1981].

COCOMO prescribes a three stage process for project estimation.

https://en.wikipedia.org/wiki/Change_impact_analysis

 In the first stage, an initial estimate is arrived at.

 Over the next two stages, the initial estimate is refined to arrive at a more

accurate estimate.

 COCOMO uses both single and multivariable estimation models at

different stages of estimation. The three stages of COCOMO estimation

technique are

 Basic COCOMO,

 Intermediate COCOMO, and

 Complete COCOMO.

14. Explain the software configuration management and what the steps to be followed

for requirement gathering and analysis.

Introduction:

 Goal of software project management is to enable a group of engineers

to work efficiently towards successful completion of a software project.

 Many software projects fail due to faulty project management practices.

Hence it is important to learn different aspects of software project

management.

Responsibility of project managers
 The responsibilities of the software project manager are as follows

 Project proposal writing,

 Project cost estimation,

 Scheduling,

 Project staffing,

 Project monitoring and control,

 Software configuration management,

 Risk management,

 Managerial report writing and presentations, etc.

Steps to be followed for requirement gathering and analysis

 Identify the relevant stakeholders.

 Establish project goals and objectives.

 Elicit requirements from stakeholders.

 Document the requirements.

 Confirm the requirements.

 Prioritize the requirements.

UNIT-III

15. List out the characteristics of a good software design and differentiate coupling and

cohesion.

Characteristics of a good software design

 Correctness: A good design should correctly implement all the functionalities

identified in the SRS document.

 Understand ability: A good design is easily understandable.

 Efficiency: It should be efficient.

 Maintainability: It should be easily amenable to change

Differentiate coupling and cohesion.

Coupling Cohesion

Coupling is the degree of

interdependence between the modules.

Cohesion is the degree to which the

elements inside a module belong

together

 Two modules highly coupled A module with high cohesion

contains elements that are tight

related to each other

Low coupling among them work Low cohesion if it contains unrelated

elements

Loose coupling reflects the higher

quality of software design

Highly cohesive modules reflect

higher quality of software design

16. Sketch the data flow diagram of library management system.

 The DFD (also known as the bubble chart) is a simple graphical formalism that

can be used to represent a system in terms of the input data to the system.

 Various processing carried out on these data, and the output data generated by

the system.

 The main reason why the DFD technique is so popular is probably because of

the fact that DFD is a very simple formalism.

 It is simple to understand and use.

 A DFD model is uses a very limited number of primitive symbols to represent

the functions performed by a system and the data flow among these functions

with a set of high level functions that a system performs.

 A DFD model hierarchically represents various sub-functions. External entity

Process Data store output Data flow

 (Diagram based upon their own knowledge)

UNIT-IV
17. Differentiate use case model and class diagram explain with any one of the example.

use case model class diagram

Behavioral diagram Structural Diagram

Describes functional requirements Describes the structure of a system

 By mentioning that who will perform

what function, and which kind of

association is exist between functions

(use cases)

By showing the system's classes, their

attributes, functions, relationships

among objects.

Communicates, Includes, Extends,

Generalization

Inheritance, Association, Aggregation,

Composition, Dependency, Realization

Specify the behavior (what system

will do?)

Specify the internal structure that will

help to complete a functionality

mentioned in use cases

 Use cases can be denoted both by

Only denoted by visual textual(i.e.

use case description) and

representation

visual representation (i.e. use case

diagram)

Only denoted by visual representation

Only summarizes relationships

between use cases, actors, and

systems does not show the order in

which steps are performed to achieve

the goals of classes executes each use

case

Only summarizes relationships

between classes of the system

does not show the order in which

classes executes.

 (Diagram was based on student’s example)

18. Write short notes on object oriented analysis and design methodology.

AN OBJECT-ORINETED ANALYSIS AND DESIGN METHODOLOGY

 The results of the analysis activities are be redefined into a design model through

several iterations.

 The Unified Process

 The unified process is an extensible framework which needs to be customized for

specific types of projects.

 The two main characteristics of the unified process are

 Use case driven

 Iterative

 Case-driven implies that use cases of the system are considered to be the central

and most important view.

 The use case view should be the first one to be constructed and should be refined

iteratively into an implementation

 The use case model is the central model. All models that constructed in the

subsequent design activities must conform to the use case model

 The unified process involves iterating over the following four phases as follows:

1. Inception:

 During this phase, the scope of the project is defined and prototypes

may be developed to form a clear idea about the project.

2. Elaboration:

 The functional and the non-functional requirements are captured

3. Construction:

 Analysis, design and implementation activities are carried out.

 Full text descriptions of use cases are written during the construction

phase and each use case is taken up for the start of a new iteration.

 System features are implemented in a series of short iterations

 Each iteration results in an executable release of the software

4. Transition:

 The product is installed in the user’s environment and maintained.

Overview of the OOAD Methodology

 The use case model is developed first.

UNIT-IV

19. Explain in detail about the various levels of testing with examples.

Software Testing:

 Testing is a process of executing a program with the intent of finding error.

 Software Testing are contains two types:

 Manual Testing and,

 Automation Testing

 Manual Testing:

 Manual testing is the process of manually testing software for defects.

 It requires a tester to play the role of an end user, and use most of all features

of the application to ensure correct behaviour

 To ensure completeness of testing, the tester often follows a written test plan

that leads them through a set of important test cases.

Testing:

Testing is a process of executing a program with the intent of finding error

 Unit Testing:

 It concentrates on each unit (Module, Component…) of the software as implemented in

source code.

 During this stage they conduct program level testing, with the help of the WBT

techniques.

 Integration Testing:

 Putting the modules together and construction of software architecture.

 There are two types of approaches to conduct Integration Testing:

 Top-down Approach

 Bottom-up approach.

20. Differentiate black box testing and white box testing.

S.

No. Black Box Testing White Box Testing

1.

It is a way of software testing in which

the internal structure or the program or

the code is hidden and nothing is known

about it.

It is a way of testing the software in

which the tester has knowledge about the

internal structure or the code or the

program of the software.

2.

Implementation of code is not needed for

black box testing.

Code implementation is necessary for

white box testing.

3. It is mostly done by software testers. It is mostly done by software developers.

4.

No knowledge of implementation is

needed.

Knowledge of implementation is

required.

5.

It can be referred to as outer or external

software testing.

It is the inner or the internal software

testing.

6. It is a functional test of the software. It is a structural test of the software.

7.

This testing can be initiated based on the

requirement specifications document.

This type of testing of software is started

after a detail design document.

8.

No knowledge of programming is

required.

It is mandatory to have knowledge of

programming.

9. It is the behavior testing of the software. It is the logic testing of the software.

S.

No. Black Box Testing White Box Testing

10.

It is applicable to the higher levels of

testing of software.

It is generally applicable to the lower

levels of software testing.

11. It is also called closed testing. It is also called as clear box testing.

12. It is least time consuming. It is most time consuming.

13.

It is not suitable or preferred for

algorithm testing. It is suitable for algorithm testing.

14.

Can be done by trial and error ways and

methods.

Data domains along with inner or internal

boundaries can be better tested.

15.

Example: Search something on google

by using keywords

Example: By input to check and verify

loops

16.

Black-box test design techniques-
 Decision table testing

 All-pairs testing

 Equivalence partitioning

 Error guessing

White-box test design techniques-
 Control flow testing

 Data flow testing

 Branch testing

17.

Types of Black Box Testing:

 Functional Testing

 Non-functional testing

 Regression Testing

Types of White Box Testing:

 Path Testing

 Loop Testing

 Condition testing

18.

It is less exhaustive as compared to white

box testing.

It is comparatively more exhaustive than

black box testing.

